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1. Intersect with a generic linear space  of complementary dimension.  

2. Compute points in  (Standard witness set) 

• Instead, we have a parametrization (instead of defining equations): 
Example: 

 

1. Pull back  to the domain space and solve  

      where  and  define  

2. Considering  and  as parameters, we find solutions using monodromy. (Pseudowitness set)

L
X ∩ L

Φ : (ℂ3 × ℂ3)2 ⟶ ℂ3×3

(u1, u2, v1, v2) ⟼ M = u1v⊤
1 + u2v⊤

2

L Φ(u1, u2, v1, v2) ∈ L
⟨Ai, Φ(u1, u2, v1, v2)⟩ = bi, i = 1,…, dim(X) Ai bi L
Ai bi
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Setup: Consider a -way tensor space  (i.e., a space of “boxes”) 

 

Def For a tensor , the asymptotic rank of  measures the growth rate of tensor powers: 

3 V = ℂa ⊗ ℂb ⊗ ℂc

Φr : (ℂa × ℂb × ℂc)r ⟶ ℂa ⊗ ℂb ⊗ ℂc

(u1, …, ur, v1, …, vr, w1, …, wr) ⟼ T =
r

∑
i=1

ui ⊗ vi ⊗ wi

T T

R̃(T) := lim
q→∞

(rank(T⊗q))
1
q

Parametrization of  (rank at most  tensors)σr(V) r
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• concise:  (injectivity of flattenings) 

• tight: the support satisfies conservation laws (generic border rank is large) 

For a matrix , the rank is multiplicative:   

For a tensor , the tensor rank is sub-multiplicative:   
(the asymptotic rank can be large, but the conjecture predicts a collapse to the trivial bound)

T ∈ V = ℂa ⊗ ℂb ⊗ ℂc

R̃(T) := lim
q→∞

(rank(T⊗q))
1
q = max{a, b, c}

a ≤ b ≤ c < ab

M R̃(M) = lim
q→∞

((rank(M))q)
1
q = rank(M)

T rank(T⊗q) ≤ (rank(T))q
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6. New bound:                

19 19

σ18(V ) Φ18 : (ui, vi, wi) ↦ T =
18

∑ ui ⊗ vi ⊗ wi

σ18(V ) 1 ≥ 187000
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186999 < 18.001169
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Goal: Systematically find all tensor spaces with strictly improved asymptotic rank bounds. 

Core question: How large is the degree  such that no polynomial vanishes on  ?

L V = 𝕂a ⊗ 𝕂b ⊗ 𝕂c Y ⊂ L
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L q Y
L

r(dim L − 1 + q
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1
q

q Y

Toward Strassen’s asymptotic rank conjecture 
Geometric framework

• For codim , we have 1 q = deg(σr(V )) − 1



Computational remark 
Formulating the polynomial system



Computational remark 
Formulating the polynomial system

We exploit the multilinear structure to improve the efficiency of homotopy continuation. 

The parametrized tensor

  

where  

r

∑
i=1

ui ⊗ vi ⊗ wi

ui ∈ ℂa−1, vi ∈ ℂb−1, wi ∈ ℂc

A generic linear slice 

  

where  

L = {At + B ∣ t ∈ ℂℓ}
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We exploit the multilinear structure to improve the efficiency of homotopy continuation. 

The system to solve: 

  

 variables ( ) and parameters .
(with additional generic linear slices if necessary)

r

∑
i=1

ui ⊗ vi ⊗ wi − (At + B) = 0

r(a + b + c − 2) + ℓ ui, vi, wi, t A ∈ ℂabc×ℓ, B ∈ ℂabc

The parametrized tensor

  

where  
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∑
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where  

L = {At + B ∣ t ∈ ℂℓ}
ℓ = codim(σr(V))

=



Results 
codimension 1 cases 



Results 
codimension 1 cases 

Scope: Systematic search for all concise cases  of  where  has codim . V = ℂa ⊗ ℂb ⊗ ℂc r ≤ 20 σr(V ) ≤ 3



Results 
codimension 1 cases 

Scope: Systematic search for all concise cases  of  where  has codim . 

Approach: Sample many points from  (using HomotopyContinuation.jl) to find a new asymptotic rank bound. 

V = ℂa ⊗ ℂb ⊗ ℂc r ≤ 20 σr(V ) ≤ 3

σr(V )



Results 
codimension 1 cases 

Scope: Systematic search for all concise cases  of  where  has codim . 

Approach: Sample many points from  (using HomotopyContinuation.jl) to find a new asymptotic rank bound. 

Hardware: All experiments were performed on a HPC cluster with 16 Genoa-generation AMD CPU cores and 64 GB 
of RAM, with a maximum wall time of 72 hours. 

V = ℂa ⊗ ℂb ⊗ ℂc r ≤ 20 σr(V ) ≤ 3

σr(V )



Results 
codimension 1 cases 

Scope: Systematic search for all concise cases  of  where  has codim . 

Approach: Sample many points from  (using HomotopyContinuation.jl) to find a new asymptotic rank bound. 

Hardware: All experiments were performed on a HPC cluster with 16 Genoa-generation AMD CPU cores and 64 GB 
of RAM, with a maximum wall time of 72 hours. 

Note: N/A indicates the degree is insufficient to improve upon the generic bound.
           Non-defective indicates that 

V = ℂa ⊗ ℂb ⊗ ℂc r ≤ 20 σr(V ) ≤ 3

σr(V )

codim(σr(V )) = abc − r(a + b + c − 2)

Codimension 1
Non-defective? New bound

No N/A
Yes
Yes
Yes
Yes
Yes

(a, b, c)

(3,2n + 1,2n + 1)
(3,5,7)

(4,7,14)
(6,6,9)

(7,7,7)
(5,8,10)

r

3n + 1
9

17

17

18
19

6n + 3
105 (HIL 2013)

≥ 1229

≥ 3601

≥ 187000 (HIL 2013)
≥ 3638

< 8.366128

< 17.098769

< 17.038715

< 18.001169
< 19.042882

deg σr(V )
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Unlike codimension  cases, when ,  does not induce the degree of non-
vanishing polynomial.   

Approach: Sample many, many, many, many points (say ) from  and do the interpolation. 

 

Goal: If  is full rank, then no degree  polynomial vanishes on  
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1 xq−1
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1 y2
1 xq−2

1 y1z1 xq−2
1 z2
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1

xq
2 xq−1
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2 y2
2 xq−2

2 y2z2 xq−2
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2 ⋯ zq
2

⋮
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Unlike codimension  cases, when ,  does not induce the degree of non-
vanishing polynomial.   

Approach: Sample many, many, many, many points (say ) from  and do the interpolation. 

 

Goal: If  is full rank, then no degree  polynomial vanishes on  

Reality: As  grows, the matrix becomes numerically ill-conditioned. (e.g., , ) 

Spoiler alert: We observed no improved bounds from  cases.

1 codim(σr(V)) ≥ 2 deg(σr(V))

D σr(V)

Mq =

xq
1 xq−1

1 y1 xq−1
1 z1 xq−2

1 y2
1 xq−2

1 y1z1 xq−2
1 z2

1 ⋯ zq
1

xq
2 xq−1

2 y2 xq−1
2 z2 xq−2

2 y2
2 xq−2

2 y2z2 xq−2
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2

⋮
xq

D xq−1
D yD xq−1

D zD xq−2
D y2

D xq−2
D yDzD xq−2

D z2
D ⋯ zq

D

rank(Mq) q σr(V) ∩ L

q 0.9100 ≈ 0.000027 1.1100 ≈ 13780
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Results 
codimension  cases ≥ 2
Codimension 2

Non-defective?

Yes
No
No
No
No
Yes
No
Yes

(a, b, c)
(2,2,3)
(2,3,5)
(2,4,7)
(3,3,8)
(2,5,9)
(4,4,8)

r
2
4
6
7
8
9

6
15
28

deg σr(V )

(2,6,11)
(3,6,9)

10
10

≥ 36
≥ 45

≥ 30005
≥ 65

≥ 78589

Codimension 3
Non-defective?

Yes
No
Yes
No
Yes
No
Yes
No

(a, b, c)
(2,3,4)
(2,4,6)
(3,3,7)
(2,5,8)
(4,4,5)
(2,6,10)

r
3
5
6
7
7
9

20
56
90

deg σr(V )

(4,5,6)
(3,4,10)

9
9

44000 (HIL 2013)
≥ 120

≥ 220

≥ 219
≥ 33634
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• The smallest promising codim  case is . We need  to improve the bound. This requires checking 
the rank of a matrix of size at least . Numerical instability prevented reliable rank verification.   
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• For codim  cases, the matrix size explodes to  
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codimension  cases ≥ 2

• The smallest promising codim  case is . We need  to improve the bound. This requires checking 
the rank of a matrix of size at least . Numerical instability prevented reliable rank verification.   

• For codim  cases, the matrix size explodes to  

Conjecture For large enough non-defective cases of codimension , we have 

2 σ9(4,4,8) q ≥ 76
3003 × 3003

4 > 1800000

1 R̃ < (generic border rank)

Codimension 2
Non-defective?

Yes
No
No
No
No
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Final recap 
Core question again

Core question:  
How large is the degree  such that no degree  polynomial vanishes on  ? 

• For codim , we have . 

• For codim , interpolation is the only (ineffective) way. 

Thank you for your attention!

q q Y = σr(V) ∩ L
1 q = deg(σr(V)) − 1
≥ 2


