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Numerical im!alicitization

A pseudowitness set (Hauenstein-Sommese 2010, 2013)

Goal: Extract geometric info (degree, dimension) without equations.

o If we had defining equations,
1. Intersect with a generic linear space L of complementary dimension.
2. Compute points in X N L (Standard witness set)
o Instead, we have a parametrization (instead of defining equations):

Example:
d: (CxC) — >
(Uy, Uy, Vi, Vo) — M =uv, + uy,
1. Pull back L to the domain space and solve (i, u,, v, v,) € L
(A, D(uy, Uy, vy, v5)) =b,, i=1,...,dim(X) whereA;and b, define L

2. Considering A; and bi as parameters, we find solutions using monodromy. (Pseudowitness set)
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Def For a tensor 71, the asymptotic rank of 7' measures the growth rate of tensor powers:

R(T) := lim (rank(T ®‘1))5
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Strassen’s asymptotic rank conjecture:

For a concise and tighttensor T € V= C* ® C’ ® C¢,
~ : 1
R(T) := lim (rank(7®9))s = max{a, b, ¢}
q— 0

e concise: a < b < ¢ < ab (injectivity of flattenings)

e tight: the support satisfies conservation laws (generic border rank is large)

For a matrix M, the rank is multiplicative: R(M) = lim ((rank(M ))q)é = rank(M)

qd— 0

For a tensor 7T’ the tensor rank is sub-multiplicative: rank(7®%) < (rank(T))?
(the asymptotic rank can be large, but the conjecture predicts a collapse to the trivial bound)
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Toward Strassen’s asymptotic rank conjecture
CasestudyV=C' Q C' ® C’

Generic border rank is 19 (the standard upper bound). We want to show that the asymptotic rank is less than 19.

1.

2.

18
Use the secant variety o,4(V') with the parametrization: @ ¢ : (u;, v;,, w;) = T = Z U Q v, @ w;

By numerical implicitization, we know that 6,4(V') is codim 1 (a hypersurface) of degree > 1387000

(e, | o1g(V) N L| > 187000) (Hauenstein-lkenmeyer-Landsberg 2013)

There is no degree 186999 homogeneous polynomial vanishing on these points.
The space of such polynomials has dim 187000 (sincedim L = 1).

Forany S € o,3(V), by sub-multiplicativity we have rank(S®18099%) < 18186999

The 187000 points in 6;4(V) N L form a basis S; of the space of degree 186999 polynomials. Hence,
rank(T®'8%%) = rank( ) ¢;5) < 18" 187000

- 1
New bound: R(T) < (rank(T®'8999%)) ™% < 18 . 1870007 < 18.001169
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Toward Strassen’s asymptotic rank conjecture

Geometric framework

Thm (Kaski-Michatek 2025) Let L be a fixed subspaceof V = K* ® K'® K¢andY C L
be a subset with the property that for all 7" € V, the asymptotic rank is at most 7. Suppose
that there is no homogeneous polynomial on L of degree g that vanishes on Y. Then, every

tensor in L has an asymptotic rank at most
1
dmL—-1+g¢g)*
r
dimL — 1

Goal: Systematically find all tensor spaces with strictly improved asymptotic rank bounds.

Core question: How large is the degree g such that no polynomial vanishes on ¥ ?
e Forcodim I, we have g = deg(c(V)) — 1
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Computational remark

Formulating the polynomial system

We exploit the multilinear structure to improve the efficiency of homotopy continuation.

The parametrized tensor o ,
r A generic linear slice

Z“i‘g"’i@“’i L={At+B|te C’)

i=1
_q b where £ = codim(c.(V))
whereu, € C7',v. € C77',w, € C° '

The system to solve:
r

Zui®vi®wi—(At+B)=O

=1

r(a+ b+ c —2)+ ¢ variables (u;, v;, w;, ) and parameters A € Cabext B e Cabe,
(with additional generic linear slices if necessary)
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Results

codimension 1 cases

Scope: Systematic search for all concise cases V = C* ® C? ® C¢ of r < 20 where 0,(V) has codim < 3.

Approach: Sample many points from ¢,(V') (using HomotopyContinuation.jl) to find a new asymptotic rank bound.

Hardware: All experiments were performed on a HPC cluster with 16 Genoa-generation AMD CPU cores and 64 GB
of RAM, with a maximum wall time of 72 hours.

Codimension 1

(a,b,c) r Non-defective? dego (V) New bound
32n+1,2n+ 1) 3n+1 No 6n+ 3 N/A
(3.5.7) 9 Yes 105 (HIL 2013) < 8.366128
4,7,14) 17 Yes > 1229 < 17.098769
(6,6,9) 17 Yes > 3601 < 17.038715
(7,7,7) 18 Yes > 187000 (HIL 2013) < 18.001169
(5,8,10) 19 Yes > 3638 < 19.042882

Note: N/A indicates the degree is insufficient to improve upon the generic bound.
Non-defective indicates that codim(c,(V)) = abc —r(a+ b+ c — 2)
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M =% M 2 A & Ay ) Ay N A Y )
q :

q g—1 g—1 q—2.,2 q—2 q—2_2 q

AD XD Yp Xp <p Ap Yp Xp Ypip Ap <p D

Goal: If rank(Mq) is full rank, then no degree g polynomial vanisheson ¢, (V) N L
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Reality: As g grows, the matrix becomes numerically ill-conditioned. (e.g., 0.9'%° ~ 0.000027, 1.1!% ~ 13780

Spoiler alert: We observed no improved bounds from codim > 2 cases.
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codimension > 2 cases

Codimension 2 Codimension 3
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(2,6,11) 10 No > 65 (4,5,6) 9 Yes > 33634
(3,6,9) 10 Yes > 78589 (3,4,10) 9 No > 219
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Conjecture For large enough non-defective cases of codimension 1, we have R < (generic border rank)
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Core question:

How large is the degree g such that no degree g polynomial vanisheson Y = ¢(V) N L?
e Forcodim 1, we have g = deg(a(V)) — 1.

e Forcodim > 2, interpolation is the only (ineffective) way.

Thank you for your attention!



