

# Asymptotic rank bounds: a **numerical census**

**Kisun Lee (Clemson University)** - [kisunl@clemson.edu](mailto:kisunl@clemson.edu)

Joint Mathematics Meeting 2026

AMS Special Session on Numerical Algebraic Geometry and Its Applications

# My first MRC



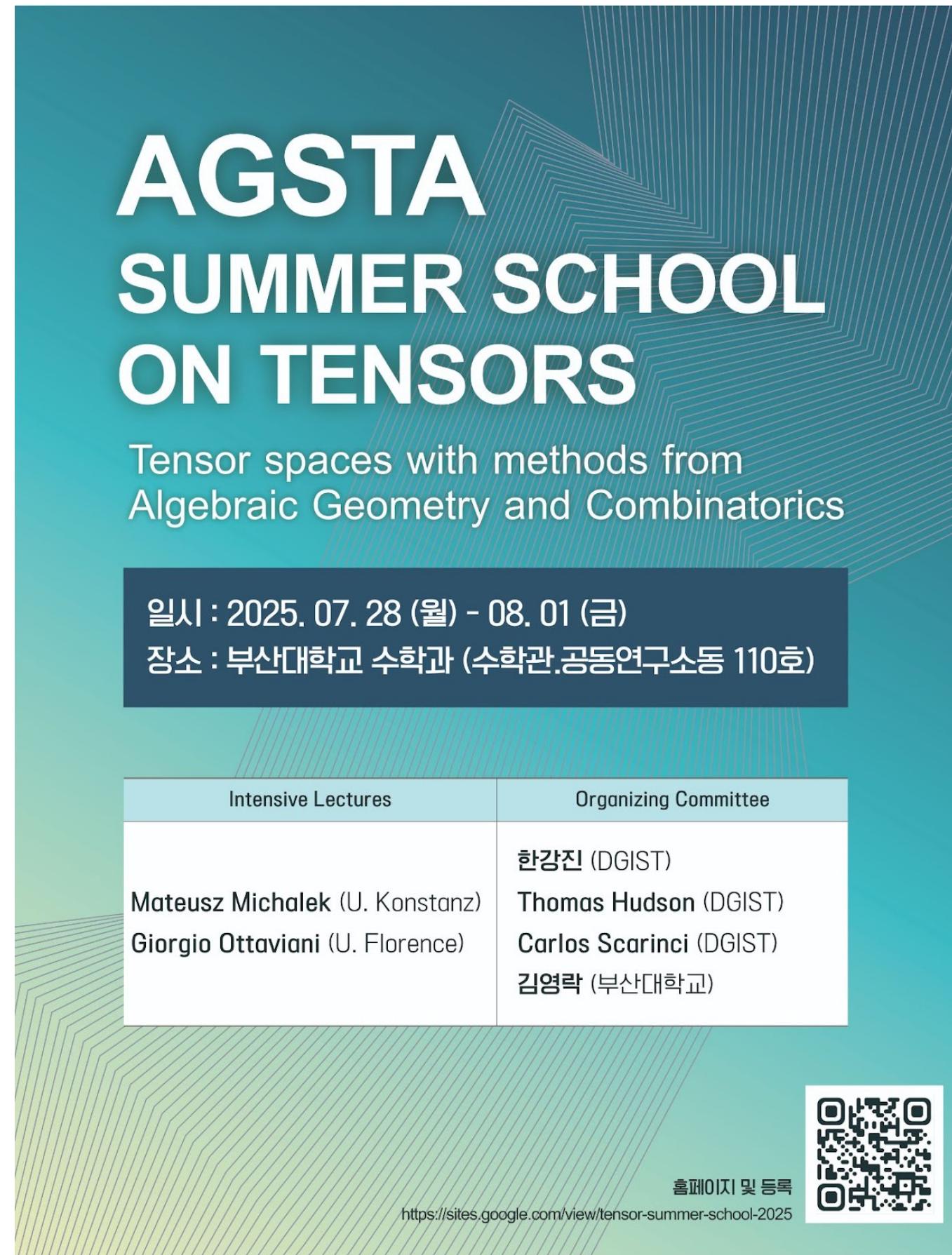
**AMS MRC 2021**  
**Combinatorial Applications of**  
**Computational Geometry and**  
**Algebraic Topology**

# My best MRC



**AMS MRC 2025**  
**Real Numerical Algebraic Geometry**

# Acknowledgement



**AGSTA**  
**SUMMER SCHOOL**  
**ON TENSORS**

Tensor spaces with methods from  
Algebraic Geometry and Combinatorics

일시 : 2025. 07. 28 (월) - 08. 01 (금)  
장소 : 부산대학교 수학과 (수학관 공동연구소동 110호)

| Intensive Lectures                                                | Organizing Committee                                                           |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Mateusz Michałek (U. Konstanz)<br>Giorgio Ottaviani (U. Florence) | 한강진 (DGIST)<br>Thomas Hudson (DGIST)<br>Carlos Scarinci (DGIST)<br>김영락 (부산대학교) |

홈페이지 및 등록  
<https://sites.google.com/view/tensor-summer-school-2025>

QR code



## Project Initiation

- AGSTA Summer School on Tensors 2025 (Busan, Korea)
- Special Thanks to Mateusz Michałek



# Representations of varieties

parametric vs. implicit

# Representations of varieties

parametric vs. implicit

**Example:** Two ways to describe  $3 \times 3$  matrices of rank at most 2.

$$\{M \in \mathbb{C}^{3 \times 3} \mid \text{rank}(M) \leq 2\} =: \sigma_2(\mathbb{C}^{3 \times 3})$$

# Representations of varieties

parametric vs. implicit

**Example:** Two ways to describe  $3 \times 3$  matrices of rank at most 2.

$$\{M \in \mathbb{C}^{3 \times 3} \mid \text{rank}(M) \leq 2\} =: \sigma_2(\mathbb{C}^{3 \times 3})$$

|  | Parametric<br>(sum of rank 1) | Implicit<br>(defining equations) |
|--|-------------------------------|----------------------------------|
|  |                               |                                  |
|  |                               |                                  |
|  |                               |                                  |
|  |                               |                                  |
|  |                               |                                  |

# Representations of varieties

parametric vs. implicit

**Example:** Two ways to describe  $3 \times 3$  matrices of rank at most 2.

$$\{M \in \mathbb{C}^{3 \times 3} \mid \text{rank}(M) \leq 2\} =: \sigma_2(\mathbb{C}^{3 \times 3})$$

|             | <b>Parametric<br/>(sum of rank 1)</b> | <b>Implicit<br/>(defining equations)</b> |
|-------------|---------------------------------------|------------------------------------------|
| Formulation |                                       |                                          |
|             |                                       |                                          |
|             |                                       |                                          |
|             |                                       |                                          |
|             |                                       |                                          |

# Representations of varieties

parametric vs. implicit

**Example:** Two ways to describe  $3 \times 3$  matrices of rank at most 2.

$$\{M \in \mathbb{C}^{3 \times 3} \mid \text{rank}(M) \leq 2\} =: \sigma_2(\mathbb{C}^{3 \times 3})$$

|             | <b>Parametric<br/>(sum of rank 1)</b> | <b>Implicit<br/>(defining equations)</b> |
|-------------|---------------------------------------|------------------------------------------|
| Formulation | $M = u_1 v_1^\top + u_2 v_2^\top$     |                                          |
|             |                                       |                                          |
|             |                                       |                                          |
|             |                                       |                                          |
|             |                                       |                                          |

# Representations of varieties

parametric vs. implicit

**Example:** Two ways to describe  $3 \times 3$  matrices of rank at most 2.

$$\{M \in \mathbb{C}^{3 \times 3} \mid \text{rank}(M) \leq 2\} =: \sigma_2(\mathbb{C}^{3 \times 3})$$

|             | <b>Parametric<br/>(sum of rank 1)</b> | <b>Implicit<br/>(defining equations)</b>     |
|-------------|---------------------------------------|----------------------------------------------|
| Formulation | $M = u_1 v_1^\top + u_2 v_2^\top$     | $\det(M) = 0 \quad (\text{i.e., } F(x) = 0)$ |
|             |                                       |                                              |
|             |                                       |                                              |
|             |                                       |                                              |

# Representations of varieties

parametric vs. implicit

**Example:** Two ways to describe  $3 \times 3$  matrices of rank at most 2.

$$\{M \in \mathbb{C}^{3 \times 3} \mid \text{rank}(M) \leq 2\} =: \sigma_2(\mathbb{C}^{3 \times 3})$$

|             | Parametric<br>(sum of rank 1)     | Implicit<br>(defining equations)             |
|-------------|-----------------------------------|----------------------------------------------|
| Formulation | $M = u_1 v_1^\top + u_2 v_2^\top$ | $\det(M) = 0 \quad (\text{i.e., } F(x) = 0)$ |
| Sampling    |                                   |                                              |
|             |                                   |                                              |
|             |                                   |                                              |

# Representations of varieties

parametric vs. implicit

**Example:** Two ways to describe  $3 \times 3$  matrices of rank at most 2.

$$\{M \in \mathbb{C}^{3 \times 3} \mid \text{rank}(M) \leq 2\} =: \sigma_2(\mathbb{C}^{3 \times 3})$$

|             | <b>Parametric<br/>(sum of rank 1)</b>         | <b>Implicit<br/>(defining equations)</b>     |
|-------------|-----------------------------------------------|----------------------------------------------|
| Formulation | $M = u_1 v_1^\top + u_2 v_2^\top$             | $\det(M) = 0 \quad (\text{i.e., } F(x) = 0)$ |
| Sampling    | Easy<br>(just choose random $u_i$ and $v_i$ ) |                                              |
|             |                                               |                                              |
|             |                                               |                                              |

# Representations of varieties

parametric vs. implicit

**Example:** Two ways to describe  $3 \times 3$  matrices of rank at most 2.

$$\{M \in \mathbb{C}^{3 \times 3} \mid \text{rank}(M) \leq 2\} =: \sigma_2(\mathbb{C}^{3 \times 3})$$

|             | <b>Parametric<br/>(sum of rank 1)</b>         | <b>Implicit<br/>(defining equations)</b>           |
|-------------|-----------------------------------------------|----------------------------------------------------|
| Formulation | $M = u_1 v_1^\top + u_2 v_2^\top$             | $\det(M) = 0 \quad (\text{i.e., } F(x) = 0)$       |
| Sampling    | Easy<br>(just choose random $u_i$ and $v_i$ ) | Hard<br>(hard to find defining eqs and solve them) |
|             |                                               |                                                    |
|             |                                               |                                                    |

# Representations of varieties

parametric vs. implicit

**Example:** Two ways to describe  $3 \times 3$  matrices of rank at most 2.

$$\{M \in \mathbb{C}^{3 \times 3} \mid \text{rank}(M) \leq 2\} =: \sigma_2(\mathbb{C}^{3 \times 3})$$

|                                                    | <b>Parametric<br/>(sum of rank 1)</b>         | <b>Implicit<br/>(defining equations)</b>           |
|----------------------------------------------------|-----------------------------------------------|----------------------------------------------------|
| Formulation                                        | $M = u_1 v_1^\top + u_2 v_2^\top$             | $\det(M) = 0 \quad (\text{i.e., } F(x) = 0)$       |
| Sampling                                           | Easy<br>(just choose random $u_i$ and $v_i$ ) | Hard<br>(hard to find defining eqs and solve them) |
| Membership test<br>(checking if $M \in \sigma_2$ ) |                                               |                                                    |
|                                                    |                                               |                                                    |

# Representations of varieties

parametric vs. implicit

**Example:** Two ways to describe  $3 \times 3$  matrices of rank at most 2.

$$\{M \in \mathbb{C}^{3 \times 3} \mid \text{rank}(M) \leq 2\} =: \sigma_2(\mathbb{C}^{3 \times 3})$$

|                                                    | <b>Parametric<br/>(sum of rank 1)</b>                  | <b>Implicit<br/>(defining equations)</b>           |
|----------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|
| Formulation                                        | $M = u_1 v_1^\top + u_2 v_2^\top$                      | $\det(M) = 0 \quad (\text{i.e., } F(x) = 0)$       |
| Sampling                                           | Easy<br>(just choose random $u_i$ and $v_i$ )          | Hard<br>(hard to find defining eqs and solve them) |
| Membership test<br>(checking if $M \in \sigma_2$ ) | Hard<br>(Can you tell the rank just by looking at it?) |                                                    |
|                                                    |                                                        |                                                    |

# Representations of varieties

## parametric vs. implicit

**Example:** Two ways to describe  $3 \times 3$  matrices of rank at most 2.

$$\{M \in \mathbb{C}^{3 \times 3} \mid \text{rank}(M) \leq 2\} =: \sigma_2(\mathbb{C}^{3 \times 3})$$

|                                                    | <b>Parametric<br/>(sum of rank 1)</b>                  | <b>Implicit<br/>(defining equations)</b>           |
|----------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|
| Formulation                                        | $M = u_1 v_1^\top + u_2 v_2^\top$                      | $\det(M) = 0 \quad (\text{i.e., } F(x) = 0)$       |
| Sampling                                           | Easy<br>(just choose random $u_i$ and $v_i$ )          | Hard<br>(hard to find defining eqs and solve them) |
| Membership test<br>(checking if $M \in \sigma_2$ ) | Hard<br>(Can you tell the rank just by looking at it?) | Easy<br>(just check if $\det(M) = 0$ )             |
|                                                    |                                                        |                                                    |

# Representations of varieties

## parametric vs. implicit

**Example:** Two ways to describe  $3 \times 3$  matrices of rank at most 2.

$$\{M \in \mathbb{C}^{3 \times 3} \mid \text{rank}(M) \leq 2\} =: \sigma_2(\mathbb{C}^{3 \times 3})$$

|                                                    | <b>Parametric<br/>(sum of rank 1)</b>                  | <b>Implicit<br/>(defining equations)</b>                                     |
|----------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------|
| Formulation                                        | $M = u_1 v_1^\top + u_2 v_2^\top$                      | $\det(M) = 0 \quad (\text{i.e., } F(x) = 0)$                                 |
| Sampling                                           | Easy<br>(just choose random $u_i$ and $v_i$ )          | Hard<br>(hard to find defining eqs and solve them)                           |
| Membership test<br>(checking if $M \in \sigma_2$ ) | Hard<br>(Can you tell the rank just by looking at it?) | Easy<br>(just check if $\det(M) = 0 \Rightarrow$ (dim, degree, witness set)) |
|                                                    |                                                        |                                                                              |

# Representations of varieties

## parametric vs. implicit

**Example:** Two ways to describe  $3 \times 3$  matrices of rank at most 2.

$$\{M \in \mathbb{C}^{3 \times 3} \mid \text{rank}(M) \leq 2\} =: \sigma_2(\mathbb{C}^{3 \times 3})$$

|                                                    | <b>Parametric<br/>(sum of rank 1)</b>                  | <b>Implicit<br/>(defining equations)</b>                                     |
|----------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------|
| Formulation                                        | $M = u_1 v_1^\top + u_2 v_2^\top$                      | $\det(M) = 0$ (i.e., $F(x) = 0$ )                                            |
| Sampling                                           | Easy<br>(just choose random $u_i$ and $v_i$ )          | Hard<br>(hard to find defining eqs and solve them)                           |
| Membership test<br>(checking if $M \in \sigma_2$ ) | Hard<br>(Can you tell the rank just by looking at it?) | Easy<br>(just check if $\det(M) = 0 \Rightarrow$ (dim, degree, witness set)) |
| Numerical AG<br>friendly?                          |                                                        |                                                                              |

# Representations of varieties

## parametric vs. implicit

**Example:** Two ways to describe  $3 \times 3$  matrices of rank at most 2.

$$\{M \in \mathbb{C}^{3 \times 3} \mid \text{rank}(M) \leq 2\} =: \sigma_2(\mathbb{C}^{3 \times 3})$$

|                                                    | <b>Parametric<br/>(sum of rank 1)</b>                  | <b>Implicit<br/>(defining equations)</b>                                     |
|----------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------|
| Formulation                                        | $M = u_1 v_1^\top + u_2 v_2^\top$                      | $\det(M) = 0$ (i.e., $F(x) = 0$ )                                            |
| Sampling                                           | Easy<br>(just choose random $u_i$ and $v_i$ )          | Hard<br>(hard to find defining eqs and solve them)                           |
| Membership test<br>(checking if $M \in \sigma_2$ ) | Hard<br>(Can you tell the rank just by looking at it?) | Easy<br>(just check if $\det(M) = 0 \Rightarrow$ (dim, degree, witness set)) |
| Numerical AG<br>friendly?                          |                                                        | <b>Yes!</b><br>(homotopy continuation, witness set, ...)                     |

# Representations of varieties

## parametric vs. implicit

**Example:** Two ways to describe  $3 \times 3$  matrices of rank at most 2.

$$\{M \in \mathbb{C}^{3 \times 3} \mid \text{rank}(M) \leq 2\} =: \sigma_2(\mathbb{C}^{3 \times 3})$$

|                                                    | <b>Parametric<br/>(sum of rank 1)</b>                  | <b>Implicit<br/>(defining equations)</b>                                     |
|----------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------|
| Formulation                                        | $M = u_1 v_1^\top + u_2 v_2^\top$                      | $\det(M) = 0$ (i.e., $F(x) = 0$ )                                            |
| Sampling                                           | Easy<br>(just choose random $u_i$ and $v_i$ )          | Hard<br>(hard to find defining eqs and solve them)                           |
| Membership test<br>(checking if $M \in \sigma_2$ ) | Hard<br>(Can you tell the rank just by looking at it?) | Easy<br>(just check if $\det(M) = 0 \Rightarrow$ (dim, degree, witness set)) |
| Numerical AG<br>friendly?                          | Maybe...?                                              | <b>Yes!</b><br>(homotopy continuation, witness set, ...)                     |

# Representations of varieties

## parametric vs. implicit

**Example:** Two ways to describe  $3 \times 3$  matrices of rank at most 2.

$$\{M \in \mathbb{C}^{3 \times 3} \mid \text{rank}(M) \leq 2\} =: \sigma_2(\mathbb{C}^{3 \times 3})$$

|                                                    | <b>Parametric<br/>(sum of rank 1)</b>                  | <b>Implicit<br/>(defining equations)</b>                                     |
|----------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------|
| Formulation                                        | $M = u_1 v_1^\top + u_2 v_2^\top$                      | $\det(M) = 0$ (i.e., $F(x) = 0$ )                                            |
| Sampling                                           | Easy<br>(just choose random $u_i$ and $v_i$ )          | Hard<br>(hard to find defining eqs and solve them)                           |
| Membership test<br>(checking if $M \in \sigma_2$ ) | Hard<br>(Can you tell the rank just by looking at it?) | Easy<br>(just check if $\det(M) = 0 \Rightarrow$ (dim, degree, witness set)) |
| Numerical AG<br>friendly?                          | Maybe...?                                              | <b>Yes!</b><br>(homotopy continuation, witness set, ...)                     |

**Numerical implicitization**

# Numerical implicitization

A pseudowitness set (Hauenstein-Sommese 2010, 2013)

# Numerical implicitization

A pseudowitness set (Hauenstein-Sommese 2010, 2013)

**Goal:** Extract geometric info (degree, dimension) without equations.

# Numerical implicitization

A pseudowitness set (Hauenstein-Sommese 2010, 2013)

**Goal:** Extract geometric info (degree, dimension) without equations.

- If we had defining equations,

# Numerical implicitization

A pseudowitness set (**Hauenstein-Sommese 2010, 2013**)

**Goal:** Extract geometric info (degree, dimension) without equations.

- If we had defining equations,
  1. Intersect with a generic linear space  $L$  of complementary dimension.
  2. Compute points in  $X \cap L$  (**Standard witness set**)

# Numerical implicitization

A pseudowitness set (Hauenstein-Sommese 2010, 2013)

**Goal:** Extract geometric info (degree, dimension) without equations.

- If we had defining equations,
  1. Intersect with a generic linear space  $L$  of complementary dimension.
  2. Compute points in  $X \cap L$  (**Standard witness set**)
- Instead, we have a parametrization (instead of defining equations):

# Numerical implicitization

A pseudowitness set (Hauenstein-Sommese 2010, 2013)

**Goal:** Extract geometric info (degree, dimension) without equations.

- If we had defining equations,
  1. Intersect with a generic linear space  $L$  of complementary dimension.
  2. Compute points in  $X \cap L$  (**Standard witness set**)
- Instead, we have a parametrization (instead of defining equations):

**Example:**

$$\begin{array}{ccc} \Phi : & (\mathbb{C}^3 \times \mathbb{C}^3)^2 & \longrightarrow & \mathbb{C}^{3 \times 3} \\ & (u_1, u_2, v_1, v_2) & \longmapsto & M = u_1 v_1^\top + u_2 v_2^\top \end{array}$$

# Numerical implicitization

## A pseudowitness set (Hauenstein-Sommese 2010, 2013)

**Goal:** Extract geometric info (degree, dimension) without equations.

- If we had defining equations,
  1. Intersect with a generic linear space  $L$  of complementary dimension.
  2. Compute points in  $X \cap L$  (**Standard witness set**)
- Instead, we have a parametrization (instead of defining equations):

**Example:**

$$\begin{array}{ccc} \Phi : & (\mathbb{C}^3 \times \mathbb{C}^3)^2 & \longrightarrow & \mathbb{C}^{3 \times 3} \\ & (u_1, u_2, v_1, v_2) & \longmapsto & M = u_1 v_1^\top + u_2 v_2^\top \end{array}$$

1. **Pull back**  $L$  to the domain space and solve  $\Phi(u_1, u_2, v_1, v_2) \in L$

$$\langle A_i, \Phi(u_1, u_2, v_1, v_2) \rangle = b_i, \quad i = 1, \dots, \dim(X) \quad \text{where } A_i \text{ and } b_i \text{ define } L$$

# Numerical implicitization

A pseudowitness set (Hauenstein-Sommese 2010, 2013)

**Goal:** Extract geometric info (degree, dimension) without equations.

- If we had defining equations,
  1. Intersect with a generic linear space  $L$  of complementary dimension.
  2. Compute points in  $X \cap L$  (**Standard witness set**)
- Instead, we have a parametrization (instead of defining equations):

**Example:**

$$\begin{array}{ccc} \Phi : & (\mathbb{C}^3 \times \mathbb{C}^3)^2 & \longrightarrow & \mathbb{C}^{3 \times 3} \\ & (u_1, u_2, v_1, v_2) & \longmapsto & M = u_1 v_1^\top + u_2 v_2^\top \end{array}$$

1. **Pull back**  $L$  to the domain space and solve  $\Phi(u_1, u_2, v_1, v_2) \in L$

$$\langle A_i, \Phi(u_1, u_2, v_1, v_2) \rangle = b_i, \quad i = 1, \dots, \dim(X) \quad \text{where } A_i \text{ and } b_i \text{ define } L$$

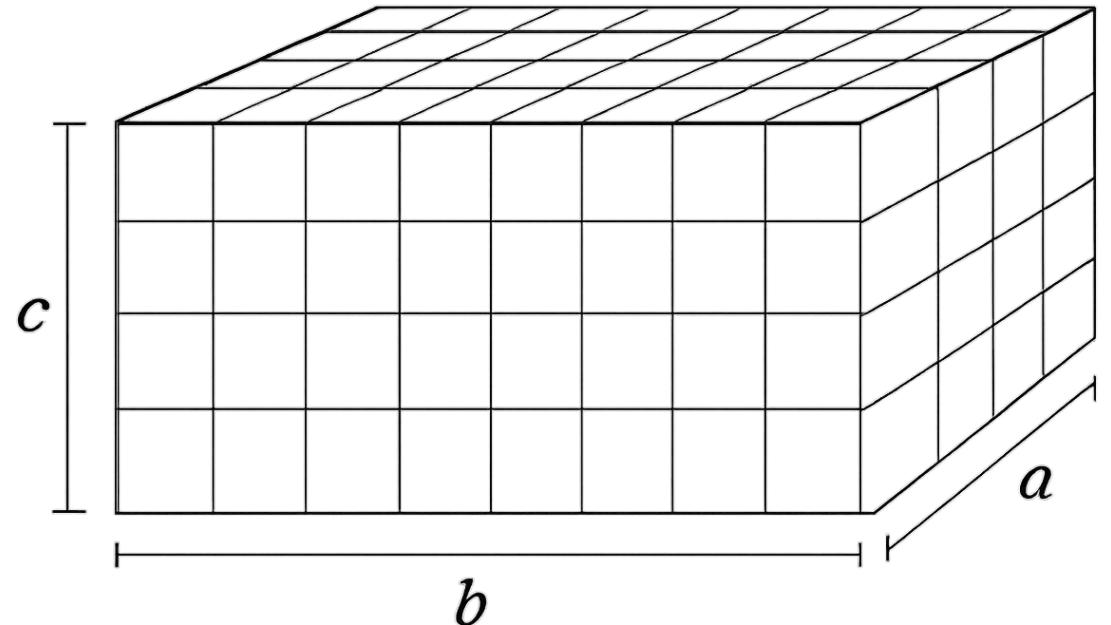
2. Considering  $A_i$  and  $b_i$  as parameters, we find solutions using monodromy. (**Pseudowitness set**)

# Asymptotic rank

# Asymptotic rank

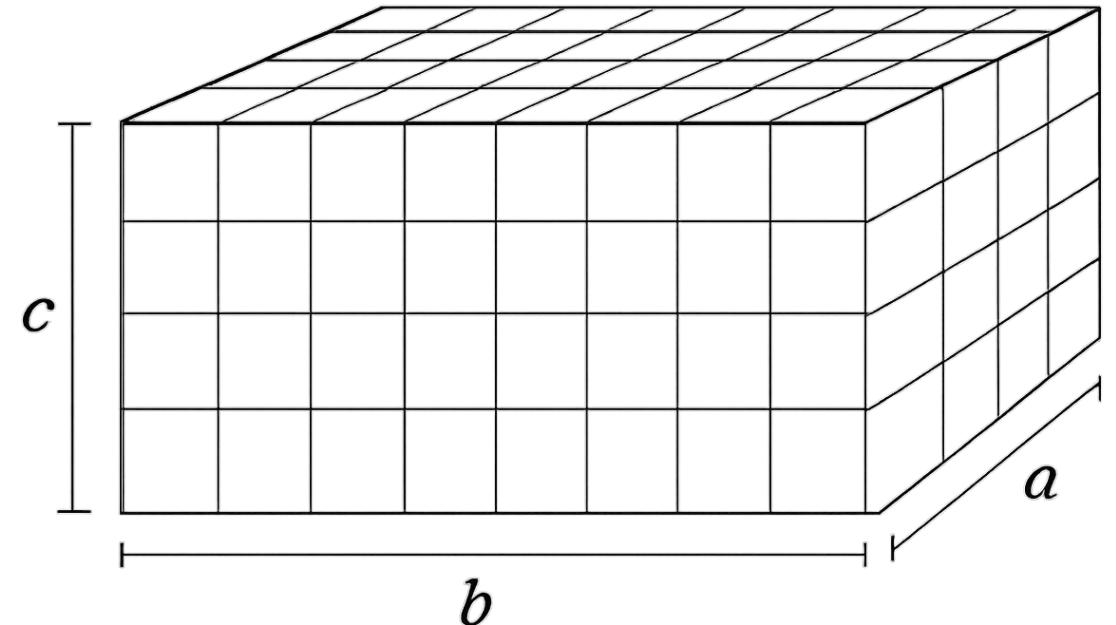
**Setup:** Consider a 3-way tensor space  $V = \mathbb{C}^a \otimes \mathbb{C}^b \otimes \mathbb{C}^c$

# Asymptotic rank



**Setup:** Consider a 3-way tensor space  $V = \mathbb{C}^a \otimes \mathbb{C}^b \otimes \mathbb{C}^c$  (i.e., a space of “boxes”)

# Asymptotic rank



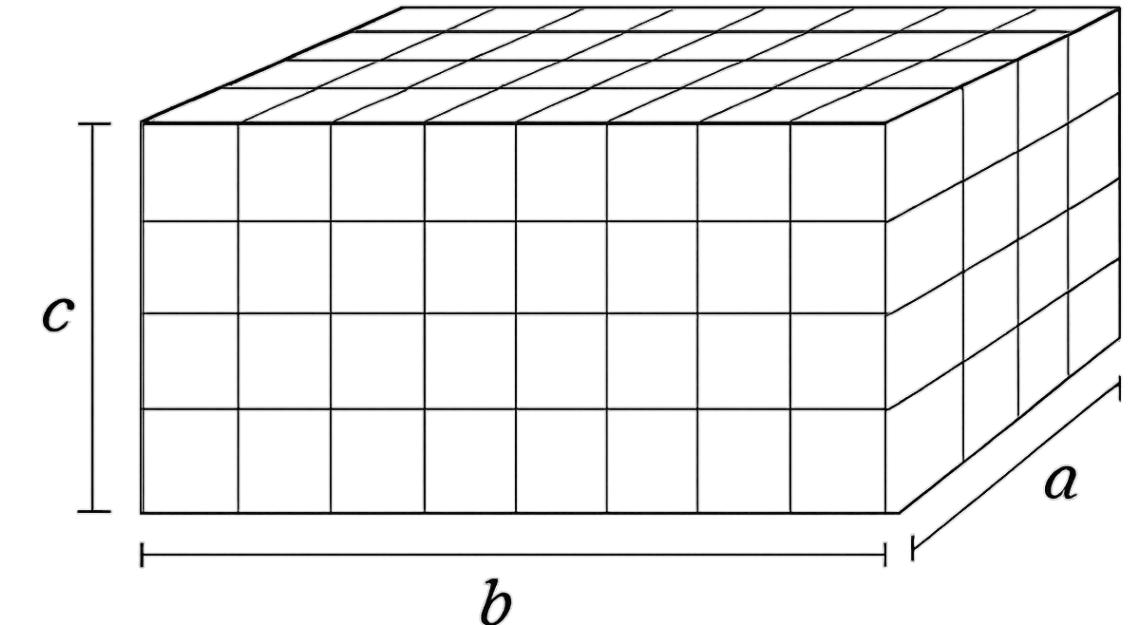
**Setup:** Consider a 3-way tensor space  $V = \mathbb{C}^a \otimes \mathbb{C}^b \otimes \mathbb{C}^c$  (i.e., a space of “boxes”)

$$\Phi_r : (\mathbb{C}^a \times \mathbb{C}^b \times \mathbb{C}^c)^r \longrightarrow \mathbb{C}^a \otimes \mathbb{C}^b \otimes \mathbb{C}^c$$

$$(u_1, \dots, u_r, v_1, \dots, v_r, w_1, \dots, w_r) \longmapsto T = \sum_{i=1}^r u_i \otimes v_i \otimes w_i$$

Parametrization of  $\sigma_r(V)$  (rank at most  $r$  tensors)

# Asymptotic rank



**Setup:** Consider a 3-way tensor space  $V = \mathbb{C}^a \otimes \mathbb{C}^b \otimes \mathbb{C}^c$  (i.e., a space of “boxes”)

$$\begin{aligned} \Phi_r : \quad (\mathbb{C}^a \times \mathbb{C}^b \times \mathbb{C}^c)^r &\longrightarrow \mathbb{C}^a \otimes \mathbb{C}^b \otimes \mathbb{C}^c \\ (u_1, \dots, u_r, v_1, \dots, v_r, w_1, \dots, w_r) &\longmapsto T = \sum_{i=1}^r u_i \otimes v_i \otimes w_i \end{aligned}$$

Parametrization of  $\sigma_r(V)$  (rank at most  $r$  tensors)

**Def** For a tensor  $T$ , the **asymptotic rank** of  $T$  measures the growth rate of tensor powers:

$$\tilde{R}(T) := \lim_{q \rightarrow \infty} (\text{rank}(T^{\otimes q}))^{\frac{1}{q}}$$

# Strassen's asymptotic rank conjecture

# Strassen's asymptotic rank conjecture

**Strassen's asymptotic rank conjecture:**

For a concise and tight tensor  $T \in V = \mathbb{C}^a \otimes \mathbb{C}^b \otimes \mathbb{C}^c$ ,

$$\tilde{R}(T) := \lim_{q \rightarrow \infty} (\text{rank}(T^{\otimes q}))^{\frac{1}{q}} = \max \{a, b, c\}$$

# Strassen's asymptotic rank conjecture

**Strassen's asymptotic rank conjecture:**

For a concise and tight tensor  $T \in V = \mathbb{C}^a \otimes \mathbb{C}^b \otimes \mathbb{C}^c$ ,

$$\tilde{R}(T) := \lim_{q \rightarrow \infty} (\text{rank}(T^{\otimes q}))^{\frac{1}{q}} = \max \{a, b, c\}$$

- **concise:**  $a \leq b \leq c < ab$  (injectivity of flattenings)
- **tight:** the support satisfies conservation laws (generic border rank is large)

# Strassen's asymptotic rank conjecture

**Strassen's asymptotic rank conjecture:**

For a concise and tight tensor  $T \in V = \mathbb{C}^a \otimes \mathbb{C}^b \otimes \mathbb{C}^c$ ,

$$\tilde{R}(T) := \lim_{q \rightarrow \infty} (\text{rank}(T^{\otimes q}))^{\frac{1}{q}} = \max \{a, b, c\}$$

- **concise:**  $a \leq b \leq c < ab$  (injectivity of flattenings)
- **tight:** the support satisfies conservation laws (generic border rank is large)

For a matrix  $M$ , the rank is multiplicative:  $\tilde{R}(M) = \lim_{q \rightarrow \infty} ((\text{rank}(M))^q)^{\frac{1}{q}} = \text{rank}(M)$

# Strassen's asymptotic rank conjecture

## Strassen's asymptotic rank conjecture:

For a concise and tight tensor  $T \in V = \mathbb{C}^a \otimes \mathbb{C}^b \otimes \mathbb{C}^c$ ,

$$\tilde{R}(T) := \lim_{q \rightarrow \infty} (\text{rank}(T^{\otimes q}))^{\frac{1}{q}} = \max \{a, b, c\}$$

- **concise:**  $a \leq b \leq c < ab$  (injectivity of flattenings)
- **tight:** the support satisfies conservation laws (generic border rank is large)

For a matrix  $M$ , the rank is multiplicative:  $\tilde{R}(M) = \lim_{q \rightarrow \infty} ((\text{rank}(M))^q)^{\frac{1}{q}} = \text{rank}(M)$

For a tensor  $T$ , the tensor rank is sub-multiplicative:  $\text{rank}(T^{\otimes q}) \leq (\text{rank}(T))^q$   
(the asymptotic rank can be large, but the conjecture predicts a collapse to the trivial bound)

# Toward Strassen's asymptotic rank conjecture

Case study  $V = \mathbb{C}^7 \otimes \mathbb{C}^7 \otimes \mathbb{C}^7$

# Toward Strassen's asymptotic rank conjecture

Case study  $V = \mathbb{C}^7 \otimes \mathbb{C}^7 \otimes \mathbb{C}^7$

**Generic border rank** is 19 (the standard upper bound).

# Toward Strassen's asymptotic rank conjecture

Case study  $V = \mathbb{C}^7 \otimes \mathbb{C}^7 \otimes \mathbb{C}^7$

**Generic border rank** is 19 (the standard upper bound). We want to show that the asymptotic rank is less than 19.

# Toward Strassen's asymptotic rank conjecture

Case study  $V = \mathbb{C}^7 \otimes \mathbb{C}^7 \otimes \mathbb{C}^7$

**Generic border rank** is 19 (the standard upper bound). We want to show that the asymptotic rank is less than 19.

1. Use the secant variety  $\sigma_{18}(V)$  with the parametrization:  $\Phi_{18} : (u_i, v_i, w_i) \mapsto T = \sum_{i=1}^{18} u_i \otimes v_i \otimes w_i$

# Toward Strassen's asymptotic rank conjecture

Case study  $V = \mathbb{C}^7 \otimes \mathbb{C}^7 \otimes \mathbb{C}^7$

**Generic border rank** is 19 (the standard upper bound). We want to show that the asymptotic rank is less than 19.

1. Use the secant variety  $\sigma_{18}(V)$  with the parametrization:  $\Phi_{18} : (u_i, v_i, w_i) \mapsto T = \sum_{i=1}^{18} u_i \otimes v_i \otimes w_i$
2. By **numerical implicitization**, we know that  $\sigma_{18}(V)$  is codim 1 (a hypersurface) of degree  $\geq 187000$  (i.e.,  $|\sigma_{18}(V) \cap L| \geq 187000$ ) **(Hauenstein-Ikenmeyer-Landsberg 2013)**

# Toward Strassen's asymptotic rank conjecture

Case study  $V = \mathbb{C}^7 \otimes \mathbb{C}^7 \otimes \mathbb{C}^7$

**Generic border rank** is 19 (the standard upper bound). We want to show that the asymptotic rank is less than 19.

1. Use the secant variety  $\sigma_{18}(V)$  with the parametrization:  $\Phi_{18} : (u_i, v_i, w_i) \mapsto T = \sum_{i=1}^{18} u_i \otimes v_i \otimes w_i$
2. By **numerical implicitization**, we know that  $\sigma_{18}(V)$  is codim 1 (a hypersurface) of degree  $\geq 187000$  (i.e.,  $|\sigma_{18}(V) \cap L| \geq 187000$ ) (**Hauenstein-Ikenmeyer-Landsberg 2013**)
3. **There is no degree 186999 homogeneous polynomial vanishing on these points.**  
The space of such polynomials has  $\dim 187000$  (since  $\dim L = 1$ ).

# Toward Strassen's asymptotic rank conjecture

Case study  $V = \mathbb{C}^7 \otimes \mathbb{C}^7 \otimes \mathbb{C}^7$

**Generic border rank** is 19 (the standard upper bound). We want to show that the asymptotic rank is less than 19.

1. Use the secant variety  $\sigma_{18}(V)$  with the parametrization:  $\Phi_{18} : (u_i, v_i, w_i) \mapsto T = \sum_{i=1}^{18} u_i \otimes v_i \otimes w_i$
2. By **numerical implicitization**, we know that  $\sigma_{18}(V)$  is codim 1 (a hypersurface) of degree  $\geq 187000$  (i.e.,  $|\sigma_{18}(V) \cap L| \geq 187000$ ) (**Hauenstein-Ikenmeyer-Landsberg 2013**)
3. **There is no degree 186999 homogeneous polynomial vanishing on these points.**  
The space of such polynomials has  $\dim 187000$  (since  $\dim L = 1$ ).
4. For any  $S \in \sigma_{18}(V)$ , by sub-multiplicativity we have  $\text{rank}(S^{\otimes 186999}) \leq 18^{186999}$

# Toward Strassen's asymptotic rank conjecture

Case study  $V = \mathbb{C}^7 \otimes \mathbb{C}^7 \otimes \mathbb{C}^7$

**Generic border rank** is 19 (the standard upper bound). We want to show that the asymptotic rank is less than 19.

1. Use the secant variety  $\sigma_{18}(V)$  with the parametrization:  $\Phi_{18} : (u_i, v_i, w_i) \mapsto T = \sum_{i=1}^{18} u_i \otimes v_i \otimes w_i$
2. By **numerical implicitization**, we know that  $\sigma_{18}(V)$  is codim 1 (a hypersurface) of degree  $\geq 187000$  (i.e.,  $|\sigma_{18}(V) \cap L| \geq 187000$ ) (**Hauenstein-Ikenmeyer-Landsberg 2013**)
3. **There is no degree 186999 homogeneous polynomial vanishing on these points.**  
The space of such polynomials has  $\dim 187000$  (since  $\dim L = 1$ ).
4. For any  $S \in \sigma_{18}(V)$ , by sub-multiplicativity we have  $\text{rank}(S^{\otimes 186999}) \leq 18^{186999}$
5. The 187000 points in  $\sigma_{18}(V) \cap L$  form a basis  $S_i$  of the space of degree 186999 polynomials. Hence,

$$\text{rank}(T^{\otimes 186999}) = \text{rank}\left(\sum c_i S_i\right) \leq 18^{186999} \cdot 187000$$

# Toward Strassen's asymptotic rank conjecture

Case study  $V = \mathbb{C}^7 \otimes \mathbb{C}^7 \otimes \mathbb{C}^7$

**Generic border rank** is 19 (the standard upper bound). We want to show that the asymptotic rank is less than 19.

1. Use the secant variety  $\sigma_{18}(V)$  with the parametrization:  $\Phi_{18} : (u_i, v_i, w_i) \mapsto T = \sum_{i=1}^{18} u_i \otimes v_i \otimes w_i$
2. By **numerical implicitization**, we know that  $\sigma_{18}(V)$  is codim 1 (a hypersurface) of degree  $\geq 187000$  (i.e.,  $|\sigma_{18}(V) \cap L| \geq 187000$ ) (**Hauenstein-Ikenmeyer-Landsberg 2013**)
3. **There is no degree 186999 homogeneous polynomial vanishing on these points.**  
The space of such polynomials has  $\dim 187000$  (since  $\dim L = 1$ ).
4. For any  $S \in \sigma_{18}(V)$ , by sub-multiplicativity we have  $\text{rank}(S^{\otimes 186999}) \leq 18^{186999}$
5. The 187000 points in  $\sigma_{18}(V) \cap L$  form a basis  $S_i$  of the space of degree 186999 polynomials. Hence,
$$\text{rank}(T^{\otimes 186999}) = \text{rank}\left(\sum c_i S_i\right) \leq 18^{186999} \cdot 187000$$
6. New bound:  $\tilde{R}(T) \leq (\text{rank}(T^{\otimes 186999}))^{\frac{1}{186999}} \leq 18 \cdot 187000^{\frac{1}{186999}} < 18.001169$

# Toward Strassen's asymptotic rank conjecture

## Geometric framework

**Thm (Kaski-Michałek 2025)** Let  $L$  be a fixed subspace of  $V = \mathbb{K}^a \otimes \mathbb{K}^b \otimes \mathbb{K}^c$ , and  $Y \subset L$  be a subset with the property that for all  $T \in V$ , the asymptotic rank is at most  $r$ . Suppose that there is no homogeneous polynomial on  $L$  of degree  $q$  that vanishes on  $Y$ . Then, every tensor in  $L$  has an asymptotic rank at most

$$r \left( \frac{\dim L - 1 + q}{\dim L - 1} \right)^{\frac{1}{q}}$$

# Toward Strassen's asymptotic rank conjecture

## Geometric framework

$$Y = \sigma_{18}(V) \cap L$$

**Thm (Kaski-Michałek 2025)** Let  $L$  be a fixed subspace of  $V = \mathbb{K}^a \otimes \mathbb{K}^b \otimes \mathbb{K}^c$ , and  $Y \subset L$  be a subset with the property that for all  $T \in V$ , the asymptotic rank is at most  $r$ . Suppose that there is no homogeneous polynomial on  $L$  of degree  $q$  that vanishes on  $Y$ . Then, every tensor in  $L$  has an asymptotic rank at most

$$r \left( \frac{\dim L - 1 + q}{\dim L - 1} \right)^{\frac{1}{q}}$$

186999

18

# Toward Strassen's asymptotic rank conjecture

## Geometric framework

**Thm (Kaski-Michałek 2025)** Let  $L$  be a fixed subspace of  $V = \mathbb{K}^a \otimes \mathbb{K}^b \otimes \mathbb{K}^c$ , and  $Y \subset L$  be a subset with the property that for all  $T \in V$ , the asymptotic rank is at most  $r$ . Suppose that there is no homogeneous polynomial on  $L$  of degree  $q$  that vanishes on  $Y$ . Then, every tensor in  $L$  has an asymptotic rank at most

$$r \left( \frac{\dim L - 1 + q}{\dim L - 1} \right)^{\frac{1}{q}}$$

# Toward Strassen's asymptotic rank conjecture

## Geometric framework

**Thm (Kaski-Michałek 2025)** Let  $L$  be a fixed subspace of  $V = \mathbb{K}^a \otimes \mathbb{K}^b \otimes \mathbb{K}^c$ , and  $Y \subset L$  be a subset with the property that for all  $T \in V$ , the asymptotic rank is at most  $r$ . Suppose that there is no homogeneous polynomial on  $L$  of degree  $q$  that vanishes on  $Y$ . Then, every tensor in  $L$  has an asymptotic rank at most

$$r \left( \frac{\dim L - 1 + q}{\dim L - 1} \right)^{\frac{1}{q}}$$

**Goal:** Systematically find all tensor spaces with strictly improved asymptotic rank bounds.

# Toward Strassen's asymptotic rank conjecture

## Geometric framework

**Thm (Kaski-Michałek 2025)** Let  $L$  be a fixed subspace of  $V = \mathbb{K}^a \otimes \mathbb{K}^b \otimes \mathbb{K}^c$ , and  $Y \subset L$  be a subset with the property that for all  $T \in V$ , the asymptotic rank is at most  $r$ . Suppose that there is no homogeneous polynomial on  $L$  of degree  $q$  that vanishes on  $Y$ . Then, every tensor in  $L$  has an asymptotic rank at most

$$r \left( \frac{\dim L - 1 + q}{\dim L - 1} \right)^{\frac{1}{q}}$$

**Goal:** Systematically find all tensor spaces with strictly improved asymptotic rank bounds.

**Core question:** How large is the degree  $q$  such that no polynomial vanishes on  $Y$ ?

# Toward Strassen's asymptotic rank conjecture

## Geometric framework

**Thm (Kaski-Michałek 2025)** Let  $L$  be a fixed subspace of  $V = \mathbb{K}^a \otimes \mathbb{K}^b \otimes \mathbb{K}^c$ , and  $Y \subset L$  be a subset with the property that for all  $T \in V$ , the asymptotic rank is at most  $r$ . Suppose that there is no homogeneous polynomial on  $L$  of degree  $q$  that vanishes on  $Y$ . Then, every tensor in  $L$  has an asymptotic rank at most

$$r \left( \frac{\dim L - 1 + q}{\dim L - 1} \right)^{\frac{1}{q}}$$

**Goal:** Systematically find all tensor spaces with strictly improved asymptotic rank bounds.

**Core question:** How large is the degree  $q$  such that no polynomial vanishes on  $Y$ ?

- For codim 1, we have  $q = \deg(\sigma_r(V)) - 1$

# Computational remark

## Formulating the polynomial system

# Computational remark

## Formulating the polynomial system

We exploit the multilinear structure to improve the efficiency of homotopy continuation.

**The parametrized tensor**

$$\sum_{i=1}^r u_i \otimes v_i \otimes w_i$$

where  $u_i \in \mathbb{C}^{a-1}$ ,  $v_i \in \mathbb{C}^{b-1}$ ,  $w_i \in \mathbb{C}^c$

=

**A generic linear slice**

$$L = \{At + B \mid t \in \mathbb{C}^\ell\}$$

where  $\ell = \text{codim}(\sigma_r(V))$

# Computational remark

## Formulating the polynomial system

We exploit the multilinear structure to improve the efficiency of homotopy continuation.

**The parametrized tensor**

$$\sum_{i=1}^r u_i \otimes v_i \otimes w_i =$$

where  $u_i \in \mathbb{C}^{a-1}, v_i \in \mathbb{C}^{b-1}, w_i \in \mathbb{C}^c$

**A generic linear slice**

$$L = \{At + B \mid t \in \mathbb{C}^\ell\}$$

where  $\ell = \text{codim}(\sigma_r(V))$

**The system to solve:**

$$\sum_{i=1}^r u_i \otimes v_i \otimes w_i - (At + B) = 0$$

$r(a + b + c - 2) + \ell$  variables  $(u_i, v_i, w_i, t)$  and parameters  $A \in \mathbb{C}^{abc \times \ell}, B \in \mathbb{C}^{abc}$ .  
(with additional generic linear slices if necessary)

# Results

## codimension 1 cases

# Results

## codimension 1 cases

**Scope:** Systematic search for all concise cases  $V = \mathbb{C}^a \otimes \mathbb{C}^b \otimes \mathbb{C}^c$  of  $r \leq 20$  where  $\sigma_r(V)$  has codim  $\leq 3$ .

# Results

## codimension 1 cases

**Scope:** Systematic search for all concise cases  $V = \mathbb{C}^a \otimes \mathbb{C}^b \otimes \mathbb{C}^c$  of  $r \leq 20$  where  $\sigma_r(V)$  has codim  $\leq 3$ .

**Approach:** Sample many points from  $\sigma_r(V)$  (using HomotopyContinuation.jl) to find a new asymptotic rank bound.

# Results

## codimension 1 cases

**Scope:** Systematic search for all concise cases  $V = \mathbb{C}^a \otimes \mathbb{C}^b \otimes \mathbb{C}^c$  of  $r \leq 20$  where  $\sigma_r(V)$  has codim  $\leq 3$ .

**Approach:** Sample many points from  $\sigma_r(V)$  (using HomotopyContinuation.jl) to find a new asymptotic rank bound.

**Hardware:** All experiments were performed on a HPC cluster with 16 Genoa-generation AMD CPU cores and 64 GB of RAM, with a maximum wall time of 72 hours.

# Results

## codimension 1 cases

**Scope:** Systematic search for all concise cases  $V = \mathbb{C}^a \otimes \mathbb{C}^b \otimes \mathbb{C}^c$  of  $r \leq 20$  where  $\sigma_r(V)$  has  $\text{codim} \leq 3$ .

**Approach:** Sample many points from  $\sigma_r(V)$  (using HomotopyContinuation.jl) to find a new asymptotic rank bound.

**Hardware:** All experiments were performed on a HPC cluster with 16 Genoa-generation AMD CPU cores and 64 GB of RAM, with a maximum wall time of 72 hours.

| Codimension 1         |          |                |                                   |             |
|-----------------------|----------|----------------|-----------------------------------|-------------|
| $(a, b, c)$           | $r$      | Non-defective? | $\deg \sigma_r(V)$                | New bound   |
| $(3, 2n + 1, 2n + 1)$ | $3n + 1$ | No             | $6n + 3$                          | N/A         |
| $(3, 5, 7)$           | 9        | Yes            | 105 ( <b>HIL 2013</b> )           | < 8.366128  |
| $(4, 7, 14)$          | 17       | Yes            | $\geq 1229$                       | < 17.098769 |
| $(6, 6, 9)$           | 17       | Yes            | $\geq 3601$                       | < 17.038715 |
| $(7, 7, 7)$           | 18       | Yes            | $\geq 187000$ ( <b>HIL 2013</b> ) | < 18.001169 |
| $(5, 8, 10)$          | 19       | Yes            | $\geq 3638$                       | < 19.042882 |

**Note:** N/A indicates the degree is insufficient to improve upon the generic bound.

Non-defective indicates that  $\text{codim}(\sigma_r(V)) = abc - r(a + b + c - 2)$

# Results

## codimension $\geq 2$ cases

# Results

## codimension $\geq 2$ cases

Unlike codimension 1 cases, when  $\text{codim}(\sigma_r(V)) \geq 2$ ,  $\deg(\sigma_r(V))$  does not induce the degree of non-vanishing polynomial.

# Results

## codimension $\geq 2$ cases

Unlike codimension 1 cases, when  $\text{codim}(\sigma_r(V)) \geq 2$ ,  $\deg(\sigma_r(V))$  does not induce the degree of non-vanishing polynomial.

**Approach:** Sample many, many, many, many points (say  $D$ ) from  $\sigma_r(V)$  and do the **interpolation**.

# Results

## codimension $\geq 2$ cases

Unlike codimension 1 cases, when  $\text{codim}(\sigma_r(V)) \geq 2$ ,  $\deg(\sigma_r(V))$  does not induce the degree of non-vanishing polynomial.

**Approach:** Sample many, many, many, many points (say  $D$ ) from  $\sigma_r(V)$  and do the **interpolation**.

$$M_q = \begin{bmatrix} x_1^q & x_1^{q-1}y_1 & x_1^{q-1}z_1 & x_1^{q-2}y_1^2 & x_1^{q-2}y_1z_1 & x_1^{q-2}z_1^2 & \cdots & z_1^q \\ x_2^q & x_2^{q-1}y_2 & x_2^{q-1}z_2 & x_2^{q-2}y_2^2 & x_2^{q-2}y_2z_2 & x_2^{q-2}z_2^2 & \cdots & z_2^q \\ & & & \vdots & & & & \\ x_D^q & x_D^{q-1}y_D & x_D^{q-1}z_D & x_D^{q-2}y_D^2 & x_D^{q-2}y_Dz_D & x_D^{q-2}z_D^2 & \cdots & z_D^q \end{bmatrix}$$

**Goal:** If  $\text{rank}(M_q)$  is full rank, then no degree  $q$  polynomial vanishes on  $\sigma_r(V) \cap L$

# Results

## codimension $\geq 2$ cases

Unlike codimension 1 cases, when  $\text{codim}(\sigma_r(V)) \geq 2$ ,  $\deg(\sigma_r(V))$  does not induce the degree of non-vanishing polynomial.

**Approach:** Sample many, many, many, many points (say  $D$ ) from  $\sigma_r(V)$  and do the **interpolation**.

$$M_q = \begin{bmatrix} x_1^q & x_1^{q-1}y_1 & x_1^{q-1}z_1 & x_1^{q-2}y_1^2 & x_1^{q-2}y_1z_1 & x_1^{q-2}z_1^2 & \cdots & z_1^q \\ x_2^q & x_2^{q-1}y_2 & x_2^{q-1}z_2 & x_2^{q-2}y_2^2 & x_2^{q-2}y_2z_2 & x_2^{q-2}z_2^2 & \cdots & z_2^q \\ & & & \vdots & & & & \\ x_D^q & x_D^{q-1}y_D & x_D^{q-1}z_D & x_D^{q-2}y_D^2 & x_D^{q-2}y_Dz_D & x_D^{q-2}z_D^2 & \cdots & z_D^q \end{bmatrix}$$

**Goal:** If  $\text{rank}(M_q)$  is full rank, then no degree  $q$  polynomial vanishes on  $\sigma_r(V) \cap L$

**Reality:** As  $q$  grows, the matrix becomes numerically ill-conditioned. (e.g.,  $0.9^{100} \approx 0.000027$ ,  $1.1^{100} \approx 13780$ )

# Results

## codimension $\geq 2$ cases

Unlike codimension 1 cases, when  $\text{codim}(\sigma_r(V)) \geq 2$ ,  $\deg(\sigma_r(V))$  does not induce the degree of non-vanishing polynomial.

**Approach:** Sample many, many, many, many points (say  $D$ ) from  $\sigma_r(V)$  and do the **interpolation**.

$$M_q = \begin{bmatrix} x_1^q & x_1^{q-1}y_1 & x_1^{q-1}z_1 & x_1^{q-2}y_1^2 & x_1^{q-2}y_1z_1 & x_1^{q-2}z_1^2 & \cdots & z_1^q \\ x_2^q & x_2^{q-1}y_2 & x_2^{q-1}z_2 & x_2^{q-2}y_2^2 & x_2^{q-2}y_2z_2 & x_2^{q-2}z_2^2 & \cdots & z_2^q \\ & & & \vdots & & & & \\ x_D^q & x_D^{q-1}y_D & x_D^{q-1}z_D & x_D^{q-2}y_D^2 & x_D^{q-2}y_Dz_D & x_D^{q-2}z_D^2 & \cdots & z_D^q \end{bmatrix}$$

**Goal:** If  $\text{rank}(M_q)$  is full rank, then no degree  $q$  polynomial vanishes on  $\sigma_r(V) \cap L$

**Reality:** As  $q$  grows, the matrix becomes numerically ill-conditioned. (e.g.,  $0.9^{100} \approx 0.000027$ ,  $1.1^{100} \approx 13780$ )

**Spoiler alert:** We observed **no** improved bounds from codim  $\geq 2$  cases.

# Results

## codimension $\geq 2$ cases

**Codimension 2**

| $(a, b, c)$ | $r$ | Non-defective? | $\deg \sigma_r(V)$ |
|-------------|-----|----------------|--------------------|
| (2,2,3)     | 2   | Yes            | 6                  |
| (2,3,5)     | 4   | No             | 15                 |
| (2,4,7)     | 6   | No             | 28                 |
| (3,3,8)     | 7   | No             | $\geq 36$          |
| (2,5,9)     | 8   | No             | $\geq 45$          |
| (4,4,8)     | 9   | Yes            | $\geq 30005$       |
| (2,6,11)    | 10  | No             | $\geq 65$          |
| (3,6,9)     | 10  | Yes            | $\geq 78589$       |

**Codimension 3**

| $(a, b, c)$ | $r$ | Non-defective? | $\deg \sigma_r(V)$      |
|-------------|-----|----------------|-------------------------|
| (2,3,4)     | 3   | Yes            | 20                      |
| (2,4,6)     | 5   | No             | 56                      |
| (3,3,7)     | 6   | Yes            | 90                      |
| (2,5,8)     | 7   | No             | $\geq 120$              |
| (4,4,5)     | 7   | Yes            | 44000 <b>(HIL 2013)</b> |
| (2,6,10)    | 9   | No             | $\geq 220$              |
| (4,5,6)     | 9   | Yes            | $\geq 33634$            |
| (3,4,10)    | 9   | No             | $\geq 219$              |

# Results

## codimension $\geq 2$ cases

**Codimension 2**

| $(a, b, c)$ | $r$ | Non-defective? | $\deg \sigma_r(V)$ |
|-------------|-----|----------------|--------------------|
| (2,2,3)     | 2   | Yes            | 6                  |
| (2,3,5)     | 4   | No             | 15                 |
| (2,4,7)     | 6   | No             | 28                 |
| (3,3,8)     | 7   | No             | $\geq 36$          |
| (2,5,9)     | 8   | No             | $\geq 45$          |
| (4,4,8)     | 9   | Yes            | $\geq 30005$       |
| (2,6,11)    | 10  | No             | $\geq 65$          |
| (3,6,9)     | 10  | Yes            | $\geq 78589$       |

**Codimension 3**

| $(a, b, c)$ | $r$ | Non-defective? | $\deg \sigma_r(V)$      |
|-------------|-----|----------------|-------------------------|
| (2,3,4)     | 3   | Yes            | 20                      |
| (2,4,6)     | 5   | No             | 56                      |
| (3,3,7)     | 6   | Yes            | 90                      |
| (2,5,8)     | 7   | No             | $\geq 120$              |
| (4,4,5)     | 7   | Yes            | 44000 <b>(HIL 2013)</b> |
| (2,6,10)    | 9   | No             | $\geq 220$              |
| (4,5,6)     | 9   | Yes            | $\geq 33634$            |
| (3,4,10)    | 9   | No             | $\geq 219$              |

- The smallest promising codim 2 case is  $\sigma_9(4,4,8)$ . We need  $q \geq 76$  to improve the bound. This requires checking the rank of a matrix of size at least  $3003 \times 3003$ . Numerical instability prevented reliable rank verification.

# Results

## codimension $\geq 2$ cases

**Codimension 2**

| $(a, b, c)$ | $r$ | Non-defective? | $\deg \sigma_r(V)$ |
|-------------|-----|----------------|--------------------|
| (2,2,3)     | 2   | Yes            | 6                  |
| (2,3,5)     | 4   | No             | 15                 |
| (2,4,7)     | 6   | No             | 28                 |
| (3,3,8)     | 7   | No             | $\geq 36$          |
| (2,5,9)     | 8   | No             | $\geq 45$          |
| (4,4,8)     | 9   | Yes            | $\geq 30005$       |
| (2,6,11)    | 10  | No             | $\geq 65$          |
| (3,6,9)     | 10  | Yes            | $\geq 78589$       |

**Codimension 3**

| $(a, b, c)$ | $r$ | Non-defective? | $\deg \sigma_r(V)$      |
|-------------|-----|----------------|-------------------------|
| (2,3,4)     | 3   | Yes            | 20                      |
| (2,4,6)     | 5   | No             | 56                      |
| (3,3,7)     | 6   | Yes            | 90                      |
| (2,5,8)     | 7   | No             | $\geq 120$              |
| (4,4,5)     | 7   | Yes            | 44000 <b>(HIL 2013)</b> |
| (2,6,10)    | 9   | No             | $\geq 220$              |
| (4,5,6)     | 9   | Yes            | $\geq 33634$            |
| (3,4,10)    | 9   | No             | $\geq 219$              |

- The smallest promising codim 2 case is  $\sigma_9(4,4,8)$ . We need  $q \geq 76$  to improve the bound. This requires checking the rank of a matrix of size at least  $3003 \times 3003$ . Numerical instability prevented reliable rank verification.
- For codim 4 cases, the matrix size explodes to  $> 1800000$

# Results

## codimension $\geq 2$ cases

**Codimension 2**

| $(a, b, c)$ | $r$ | Non-defective? | $\deg \sigma_r(V)$ |
|-------------|-----|----------------|--------------------|
| (2,2,3)     | 2   | Yes            | 6                  |
| (2,3,5)     | 4   | No             | 15                 |
| (2,4,7)     | 6   | No             | 28                 |
| (3,3,8)     | 7   | No             | $\geq 36$          |
| (2,5,9)     | 8   | No             | $\geq 45$          |
| (4,4,8)     | 9   | Yes            | $\geq 30005$       |
| (2,6,11)    | 10  | No             | $\geq 65$          |
| (3,6,9)     | 10  | Yes            | $\geq 78589$       |

**Codimension 3**

| $(a, b, c)$ | $r$ | Non-defective? | $\deg \sigma_r(V)$      |
|-------------|-----|----------------|-------------------------|
| (2,3,4)     | 3   | Yes            | 20                      |
| (2,4,6)     | 5   | No             | 56                      |
| (3,3,7)     | 6   | Yes            | 90                      |
| (2,5,8)     | 7   | No             | $\geq 120$              |
| (4,4,5)     | 7   | Yes            | 44000 <b>(HIL 2013)</b> |
| (2,6,10)    | 9   | No             | $\geq 220$              |
| (4,5,6)     | 9   | Yes            | $\geq 33634$            |
| (3,4,10)    | 9   | No             | $\geq 219$              |

- The smallest promising codim 2 case is  $\sigma_9(4,4,8)$ . We need  $q \geq 76$  to improve the bound. This requires checking the rank of a matrix of size at least  $3003 \times 3003$ . Numerical instability prevented reliable rank verification.
- For codim 4 cases, the matrix size explodes to  $> 1800000$

**Conjecture** For large enough non-defective cases of codimension 1, we have  $\tilde{R} < (\text{generic border rank})$

# Final recap

Core question again

# Final recap

Core question again

## Core question:

How large is the degree  $q$  such that no degree  $q$  polynomial vanishes on  $Y = \sigma_r(V) \cap L$ ?

# Final recap

## Core question again

### Core question:

How large is the degree  $q$  such that no degree  $q$  polynomial vanishes on  $Y = \sigma_r(V) \cap L$ ?

- For codim 1, we have  $q = \deg(\sigma_r(V)) - 1$ .
- For codim  $\geq 2$ , interpolation is the only (ineffective) way.

# Final recap

## Core question again

### Core question:

How large is the degree  $q$  such that no degree  $q$  polynomial vanishes on  $Y = \sigma_r(V) \cap L$ ?

- For codim 1, we have  $q = \deg(\sigma_r(V)) - 1$ .
- For codim  $\geq 2$ , interpolation is the only (ineffective) way.

**Thank you for your attention!**